На правах рукописи

АЛИЕВ Джамшед Насридинович

АНОДНОЕ ПОВЕДЕНИЕ И ОКИСЛЕНИЕ ЦИНК-АЛЮМИНИЕВЫХ СПЛАВОВ, ЛЕГИРОВАННЫХ ЩЕЛОЧНОЗЕМЕЛЬНЫМИ МЕТАЛЛАМИ

02.00.04-физическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук Работа выполнена в лаборатории «Коррозионностойкие материалы» Института химии им. В.И. Никитина АН Республики Таджикистан и на кафедрах: «Технология электрохимических производств», «Материаловедение, металлургические машины и оборудование» Таджикского технического университета имени академика М.С. Осими.

Научный руководитель: доктор химических наук, академик АН Республики Таджикистан, профессор **Ганиев Изатулло Наврузович,**

Официальные оппоненты: доктор технических наук, член-кор. АН РТ, профессор **О**динаев **Хайдар**

Одинаевич

кандидат химических наук Курбонова Мукадас Завайдовна

Ведущая организация: Таджикский государственный педагогический универиситет имени С. Айни, кафедра Технологии машиноведения

Защита состоится «22» <u>сентября</u> 20<u>10</u> г. в <u>14⁰⁰</u> часов на заседании диссертационного совета ДМ 047.003.01 при Институте химии им. В.И. Никитина АН Республики Таджикистан по адресу: 734063, г. Душанбе, ул. Айни, 299/2. E-mail: <u>gulchera@list.ru</u>

С диссертацией можно ознакомиться в библиотеке Института химии им. В.И. Никитина АН Республики Таджикистан.

Автореферат разослан «16» августа 2010 г.

Ученый секретарь диссертационного совета, кандидат химических наук

Общая характеристика работы

Актуальность проблемы. Борьба с коррозией металлов является одной из важнейших технических проблем. Она начинается с подбора материала для создаваемого изделия. Требования к коррозионной стойкости материала могут меняться в широких пределах в зависимости от назначения изделия, условий его эксплуатации и планируемого срока службы. Изделия и сооружения из металла составляют наиболее значительную и ценную часть основных производственных фондов любой промышленно развитой страны, и их защита от коррозии является важной проблемой.

За последние годы интерес исследователей к цинк- алюминиевым сплавам не уменьшается, что привело к широкому применению их за рубежом как защитных противокоррозионных покрытий в различных отраслях промышленности. Им присвоены названия Гальфан I (цинк+5мас.% алюминия) и Гальфан II (цинк++5мас.% алюминия). В качестве легирующих компонентов к данным сплавам нами были выбраны кальций, стронций и барий, как эффективные анодное добавки, улучшающие коррозионную устойчивость цинк-алюминиевых покрытий.

Цель работы заключается в разработке состава сплавов Zn5Al и Zn55Al, легированных кальцием, стронцием и барием, предназначенных для защиты стальных сооружений от коррозии. Для достижения поставленной цели были решены следующие задачи: исследовано коррозионно-электрохимическое поведение сплавов в среде электролита NaCl различной концентрации; изучена кинетика и механизм процесса окисления твердых сплавов; определены теплофизические свойства цинк-алюминиевых сплавов и установлены оптимальные концентрации легирующих компонентов.

Научная новизна. На основе экспериментальных исследований установлены закономерности изменения электрохимических характеристик сплавов Zn5Al и Zn55Al, легированных кальцием, стронцием и барием, в среде электролита NaCl с концентрациями 0.03, 0.3 и 3%. Установлен механизм процесса окисления сплавов Zn5Al и Zn55Al, легированных щелочноземельными металлами в твердом состоянии. Определены фазовые составляющие продуктов окисления и их роль в процессе коррозии. Изучены теплофизические свойства сплавов.

Практическая значимость работы заключается:

в выборе оптимальных составов сплавов Zn5Al и Zn55Al, содержащих кальций, стронций и барий с наименьшей скоростью окисления в атмосфере воздуха;

 в разработке новых составов Zn5Al и Zn55Al, легированных кальцием, стронцием и барием, с повышенным сопротивлением к электрохимической коррозии и защите их малыми патентами Республики Таджикистан.

Основные положения, выносимые на защиту:

- электрохимические характеристики сплавов Zn5Al и Zn55Al с кальцием, стронцием и барием, в среде электролита 0.03, 0.3 и 3%-ного NaCI;
- зависимость кинетических и энергетических характеристик процесса окисления цинк-алюминиевых сплавов Zn5Al и Zn55Al с щелочноземельными металлами от концентрации и температуры;
- результаты исследования продуктов окисления сплавов при высоких температурах;
- результаты исследования удельной теплоемкости сплавов Zn5Al и Zn55Al.

Апробация работы. Основные положения диссертации обсуждались на Республиканской научно-практической конференции «Прогрессивные методы производства» (Душанбе, 2009г.); научно-практической конференции «Актуальные проблемы технологического образования в высших, средних специальных и средних учебных заведениях» (Душанбе, 2009г.); Республиканской научно-практической конференции «Современные проблемы химии, химической технологии и металлургии» (Душанбе, 2009г.); Республиканской научно-теоретической конференции «Молодежь и современная наука» (Душанбе, 2010г.); IV Международной научно-практической конференции «Перспективы развития науки и образования» (Душанбе, 2010г.);

Публикации. По результатам исследований опубликовано 13 работ, в том числе 3 статьи в журналах, рекомендованных ВАК РФ, т.е. «Доклады АН Республики Таджикистан», «Известия АН Республики Таджикистан» и журнал «Прикладной химии»; получено 3 малых патента Республики Таджикистан.

Объем и структура работы. Диссертация состоит из введения, обзора литературы, трёх глав, выводов, списка литературы и приложений. Работа изложена на 158 страницах компьютерного набора, включая 30 таблиц, 81 рисунок. Список литературы включает 94 наименования.

Разрешено к печати 14.07.2010 г. Сдано в печать 10.08.2010 г. Бумага офсетная. Формат 60 х 84 1/16. Печать офсетная. Заказ №18. Тираж 100 экз.

Отпечатано в типографии ТТУ им. ак. М.С. Осими, г. Душанбе, пр. Раджабовых, 10

- 9. Малый патент Республики Таджикистан № ТЈ 318 от 09.03.10г. Цинк-алюминиевый сплав / Ганиев И.Н., Обидов З.Р., Алиев Дж.Н., Амини Резо.
- 10. Алиев Дж.Н., Ганиев И.Н., Обидов З.Р., Ганиева Н.И. О влиянии щелочноземельных металлов на коррозионно-электрохимические свойства цинк-алюминиевых покрытий / Материалы IV Международной научно-практической конференции «Перспективы развития науки и образования » ТТУ им. М.С. Осими. 2010. С.38-41.
- 11. Обидов З.Р., Ганиев И.Н., Алиев Дж.Н., Ганиева Н.И. Анодное поведение сплавов Zn5Al, Zn55Al, легированных кальцием, в растворах NaCl / Журнал прикладной химии. 2010 (прошло рецензирование и принято к опубликованию).
- 12. Низомов З., Саидов Р.Х., Гулов Б.Н., Авезов З., Алиев Дж.Н. Исследование температурной зависимости теплоемкости сплавов Zn5Al, Zn55Al, легированных щелочноземельными металлами / Материалы IV Международной научно-практической конференции «Перспективы развития науки и образования». ТТУ им. М.С. Осими. 2010. С.73-76.
- 13. Гулов Б.Н., Авезов З., Алиев Дж.Н., Саидов Р.Х. Исследование температурной зависимости удельной теплоёмкости цинка методом охлаждения и сравнение с теорией Дебая / Материалы Республиканской научно-теоретической конференции «Молодежь и современная наука». Комитет по делам молодежи, спорта и туризма при Правительстве Республики Таджикистан. 2010. С.339-342.

Основное содержание работы

Во введении изложены предпосылки и основные проблемы исследования, обоснована актуальность работы, раскрыта структура диссертации.

В первой главе приведен анализ литературы, посвящённой особенностям структурообразования сплавов системы Al-Zn, коррозионно-электрохимическому поведению цинка и покрытий на его основе, окислению и коррозионно-электрохимическому поведению цинк-алюминиевых сплавов в качестве защитного покрытия, технологии нанесения защитных покрытий.

Выводы по обзору литературы и постановка задачи. Элементы II и III группы Периодической системы химических элементов Д.И. Менделеева и сплавы с их участием находят широкое применение во многих отраслях промышленности. Сплавы алюминия и цинка являются основой многих коррозионностойких сплавов и защитных покрытий.

Обзор литературы показывает, что кинетика окисления элементов II и III группы Периодической системы исследована, хотя информация носит несколько ограниченный характер. Имеются данные по кинетике окисления сплавов алюминия с цинком, их электрохимическому поведению в среде электролита NaCl. Эти сплавы находят применение при разработке протекторных сплавов.

Хорошо изучены диаграммы состояния и физико- механические свойства сплавов системы Al-Zn. Однако подобные данные для сплавов тройных систем, особенно с участием ЩЗМ (Ca, Sr, Ba), ограниченны.

Расширение областей применения, особенно в агрессивных средах, цинковых и алюминиевых сплавов требует систематических исследований физико-химических и коррозионно- электрохимических свойств твёрдых сплавов с участием элементов второй группы Периодической системы. Однако проведенный обзор литературы показал, что кинетика окисления и коррозионно-электрохимические свойства сплавов Zn5Al (Гальфан I) и Zn55Al (Гальфан II) с ЩЗМ (Са, Sr, Ba) практически не исследованы.

Таким образом, на основании вышеизложенного можно заключить, что исследование анодного поведения и окисления цинк- алюминиевых сплавов Zn5Al и Zn55Al, легированных щелочноземельными металлами, предназначенных в качестве защитных покрытий стальных конструкции и изделий из них, является актуальной задачей и имеет как фундаментальный, так и прикладной характер.

Анодное поведение сплавов Zn5Al и Zn55Al, легированных щелочноземельными металлами, в среде электролита NaCl

Методики исследования электрохимических свойств сплавов. При изучении электрохимических свойств тройных сплавов применяли потенциодинамический метод. Сплавы для коррозионно-электрохимических исследований получали в шахтной печи сопротивления типа СШОЛ при 750-800°С с использованием алюминиевых лигатур с ЩЗМ. Из полученных сплавов отливали в графитовую изложницу стержни диаметром 8 мм и длиной 140 мм. Перед погружением образца в рабочий раствор его торцевую часть зачищали наждачной бумагой, полировали, обезжиривали, тщательно промывали спиртом и затем погружали в раствор 0.03, 0.3 и 3%-ного NaCl. Температура раствора в ячейке поддерживалась постоянно (20°С) с помощью термостата МЛШІ-8. Электродом сравнения служил хлорсеребряный, вспомогательным — платиновый.

Исследование анодного поведения сплавов Zn5Al и Zn55Al, легированных IЦ3M, проводилось в среде электролита NaCl при скорости развёртки потенциала 2мB/сек на потенциостате ПИ-50.1.1.

При электрохимических исследованиях образцы потенциодинамически анодно поляризовали от бестокового потенциала, установившегося при погружении, до резкого возрастания тока в результате питтингообразования. Затем образцы поляризовали в обратном направлении до потенциала — 1400 MB, в результате чего происходило подщелачивание приэлектродного слоя поверхности сплава, наконец, образцы поляризовали вновь в положительном направлении. Расчет плотности тока коррозии проводили по катодной кривой с учётом наклона тафелевской прямой, равной $b_{\kappa} = 0.122B$ для сплава Zn5Al и $b_{\kappa} = 0.778B$ для сплава Zn5Al.

Анодное поведение сплавов Zn5Al и Zn55Al, легированных кальцием, в среде электролита NaCl. Учитывая питтинговый механизм коррозии цинк-алюминиевых сплавов особое внимание было уделено определению потенциалов питтингообразования и коррозии сплавов и влиянию на него легирующих элементов, а также концентрации электролита.

Приведенные в табл. 1 изменения установившегося потенциала свободной коррозии цинк-алюминиевых сплавов Zn5Al, легированных кальцием, во времени в средах 0.03; 0.3 и 3%-ного раствора NaCl, которые фиксировались в течение 1 часа, показывают, что независимо от химического состава, то есть концентрации легирующей добавки-кальция, происходит незначительное смещение

Основное содержание диссертации изложено в следующих публикациях:

- 1. Алиев Дж.Н., Ганиев И.Н., Обидов З.Р. Влияние добавок кальция на анодное поведение цинк-алюминиевого покрытия Zn5Al в среде электролита NaCl // Доклады АН Республики Таджикистан. 2008. Т.51. №9. С.691-695.
- 2. Малый патент Республики Таджикистан № ТЈ 199 от 11.11.08г. Цинк-алюминиевый сплав / Ганиев И.Н., Алиев Дж.Н., Обидов 3.Р., Амонова А.В., Алиханова С.Дж.
- 3. Алиев Дж.Н., Ганиев И.Н., Амонова А.В., Алиханова С.Дж., Обидов З.Р. Анодное поведение сплава Zn55Al, легированного кальцием, в среде электролита NaCl // Известия АН Республики Таджикистан. Отделение физико-математических, химических, геологических и технических наук. 2009. №1(134). C.55-58.
- 4. Алиев Дж.Н., Ганиев И.Н., Обидов З.Р. Анодное поведение цинк-алюминиевого покрытия Zn55Al, легированного стронцием, в среде электролита NaCl / Материалы научно-практической конференции «Актуальные проблемы технологического образования высших, средних специальных и средних учебных заведений». ТГПУ им. С. Айни. 2009. С.26-28.
- Алиев Дж.Н., Ганиева Н.И., Обидов З.Р. Окисление сплава Zn55Al, легированного кальцием, кислородом газовой фазы / Материалы Республиканской научно-практической конференции «Прогрессивные методы производства». ТТУ им. М.С. Осими. 2009. С.89-91.
- 6. Алиев Дж.Н., Обидов З.Р., Ганиева Н.И., Бердиев А.Э. Кинетика окисления твердого цинк-алюминиевого сплава Zn5Al, легированного кальцием / Материалы Республиканской научнопрактической конференции «Современные проблемы химии, химической технологии и металлургии». ТТУ им. М.С. Осими. 2009. С.128-129.
- 7. Малый патент Республики Таджикистан № ТЈ 276 от 19.05.09г. Цинк-алюминиевый сплав / Ганиев И.Н., Алиев Дж.Н., Обидов 3.Р., Ганиева Н.И.
- 8. Алиев Дж.Н., Обидов З.Р., Ганиева Н.И. Разработка состава новых противокоррозионных защитных покрытий на основе цинковых сплавов / Материалы Республиканской научно-теоретической конференции «Молодежь и современная наука». Комитет по делам молодежи, спорта и туризма при Правительстве Республики Таджикистан. 2010. С.193-197.

выводы

- 1. Потенциодинамическим методом установлены следующие закономерности изменения электрохимических характеристик сплавов Zn5Al и Zn55Al, легированных кальцием, стронцием и барием, в среде электролита NaCl с концентрацией 0.03; 0.3 и 3%:
- зависимость потенциала коррозии сплавов Zn5Al и Zn55Al от содержания в них ЩЗМ имеет экстремальный характер; увеличение концентрации хлор-ионов в электролите способствует уменьшению величины потенциала коррозии.
- потенциалы питтингообразования и репассивации с ростом концентрации легирующих элементов в сплавах смещаются в положительную, а с увеличением концентрации хлор-ионов в среде электролита NaCl в отрицательную область.
- скорость коррозии сплавов Zn5Al и Zn55Al уменьшается в 2-3 раза при легировании их ЩЗМ до 0.3 мас.%.
- 2. Исследованием кинетики высокотемпературного окисления твердых сплавов систем Zn5Al-Ca(Sr, Ba) и Zn55Al-Ca(Sr, Ba) кислородом воздуха установлено, что окисление сплавов подчиняется параболическому закону. Истинная скорость окисления имеет порядок: 10⁻⁴ кг·м⁻²·сек⁻¹. Кажущаяся энергия активации в зависимости от состава концентрации легирующего компонента изменяется для сплавов системы Zn5Al-Ca от 165.3 до 68.9 кДж/моль, для сплавов систем: Zn5Al-Sr от 165.3 до 64.7 кДж/моль, для Zn5Al-Ba от 165.3 до 60.2 кДж/моль. Определено, что добавки ЩЗМ увеличивают окисляемость исходных сплавов Zn5Al и Zn55Al. Сплавы системы Zn55AlBa характеризуются более высокой скоростью окисления, чем сплавы с кальцием и стронцием.
- 3. Методами рентгенофазового анализа установлены фазовый состав продуктов окисления сплавов Zn5Al-IЦ3M и Zn55Al-IЦ3M и их роль в процессе окисления. Продуктами окисления исследованных сплавов Zn5Al и Zn55Al, легированных кальцием, стронцием и барием, являются простые оксиды ZnO, Al₂O₃, CaO, SrO, BaO и оксиды сложного состава Al_2O_3 ·ZnO, Al_2O_3 ·CaO, Al_2O_3 ·SrO и Al_2O_3 ·BaO.
- 4. Методом охлаждения образцов изучены коэффициент теплоотдачи и удельная теплоемкость сплавов Zn5Al и Zn55Al, легированных щелочноземельными металлами.

потенциала свободной коррозии (- $E_{\text{св.корр.}}$, B) в положительную область. Как видно, по мере уменьшения концентрации хлор-ионов в электролите потенциал - $E_{\text{св.корр.}}$ уменьшается, что косвенно свидетельствует о снижении коррозионной стойкости сплавов в среде NaCl.

Таблица 1 Коррозионно-электрохимические свойства сплава Zn5Al, легированного кальцием, в среде электролита 0.03%, 0.3% и 3%-ного NaCl

%	Содержа- ние каль- ция, мас.%	Электр	охимиче	Скорость корро- зии			
NaCl,		-Есв.корр.	-Екорр.	-E _{π.o.}	-E _{реп.}	$i_{\text{kopp.}} \cdot 10^{-2}$	K·10 ⁻³
Z	ция, мас. /0		В			A/M^2	$\Gamma/M^2 \cdot \mathbf{q}$
	-	1.050	1.060	0.915	0.930	0.102	1.24
	0.005	1.040	1.005	0.860	0.905	0.039	0.48
0.03	0.01	1.010	1.025	0.880	0.940	0.029	0.35
0.0	0.05	1.015	1.035	0.890	0.945	0.048	0.59
	0.1	1.030	1.035	0.895	0.940	0.051	0.62
	0.3	1.035	1.050	0.905	0.960	0.061	0.74
	-	1.070	1.080	0.935	0.950	0.105	1.28
	0.005	1.060	1.030	0.880	0.925	0.043	0.52
0.3	0.01	1.030	1.050	0.900	0.960	0.034	0.41
0.	0.05	1.035	1.060	0.910	0.965	0.052	0.63
	0.1	1.050	1.060	0.915	0.960	0.055	0.67
	0.3	1.055	1.070	0.925	0.980	0.064	0.78
	-	1.100	1.115	0.965	0.980	0.109	1.33
	0.005	1.090	1.060	0.910	0.955	0.049	0.60
0	0.01	1.060	1.080	0.930	0.990	0.038	0.46
3.0	0.05	1.065	1.090	0.940	0.995	0.056	0.68
	0.1	1.080	1.090	0.945	0.990	0.059	0.72
	0.3	1.085	1.100	0.955	1.010	0.068	0.83

Результаты свидетельствуют, что добавки кальция в незначительных количествах (0.005-0.05 мас.%) сдвигают потенциалы свободной коррозии ($E_{\text{св.корр.}}$) и питтингообразования сплава Zn5Al в положительную сторону. Однако дальнейший рост содержания кальция в сплавах в пределах 0.05÷0.3 мас.% сдвигает $E_{\text{св.корр.}}$ в отрицательную сторону и такое поведение сплавов, содержащих кальций, имеет экстремальный характер. Подобная тенденция имеет место во всех исследованных средах (табл. 1).

На рис. 1 представлены потенциодинамические анодные поляризационные кривые сплава Zn55Al, легированного кальцием, в среде раствора электролита 0.3; 0.03%-ного NaCl, которые показывают, что кривые 2-5, относящиеся к сплавам с добавками кальция 0.005-0.1 мас.%, смещены в область более положительных значений потенциала, по сравнению с кривой 1 для исходного сплава Zn55A. Это свидетельствует о более низкой анодной скорости коррозии данных сплавов.

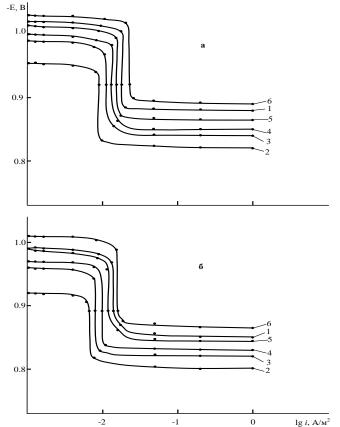


Рисунок 1. Потенциодинамические анодные поляризационные кривые (скорость развёртки потенциала 2мВ/с) сплава Zn55Al (1), содержащего кальция, мас.%: 0.005 (2); 0.01 (3); 0.05 (4); 0.1 (5); 0.3 (6), в среде раствора электролита 0.3% (а) и 0.03%-ного (б) NaCl.

Анодное поведение сплавов Zn5Al и Zn55Al, легированных стронцием и барием, в среде электролита NaCl. Результаты исследования временной зависимости потенциала свободной коррозии сплава Zn5Al, легированного стронцием различной концентрации, в трех исследуемых средах раствора электролита NaCl приведены в табл. 2

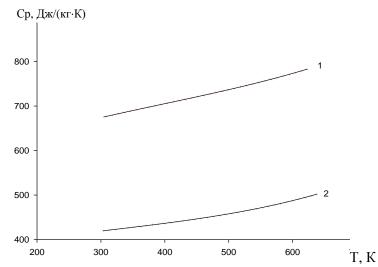


Рисунок 3. Температурная зависимость удельной теплоёмкости сплавов Zn5Al (1) и Zn55Al (2).

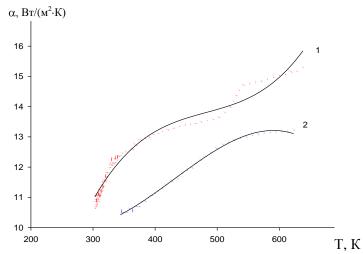


Рисунок 4. Температурная зависимость коэффициента теплоотдачи сплавов Zn5Al (1) и Zn55Al (2).

Из данных теплоемкости и скорости охлаждения (dT/dt) вычислялась температурная зависимость коэффициента теплоотдачи для данных сплавов (рис.4). В интервале температуры 520-530К наблюдается некоторый спад значения коэффициента теплоотдачи.

Таблица 7 Зависимость кажущейся энергии активации процесса окисления твердых цинк-алюминиевых сплавов Zn5Al и Zn55Al от содержания кальция, стронция и бария

Сплав	Содержание	Кажущаяся энергия активации, кДж/моль							
	ЩЗМ в спла- ве, мас.%		Добавка, мас.%						
	,	_	0.005	0.01	0.05	0.1	0.3		
	_	165.32	_	_	_	_	_		
[A]	Ca	_	149.40	123.63	104.36	87.60	68.92		
Zn5Al	Sr	_	145.35	118.42	102.53	82.94	64.72		
	Ba	_	139.40	112.28	92.35	77.87	60.25		
1	_	140.24	_	-	_	_	_		
Zn55Al	Ca	ı	98.15	76.62	66.75	41.80	32.42		
	Sr	_	96.68	72.22	64.81	36.56	29.05		
17	Ba	_	91.95	70.60	61.27	34.85	28.18		

Исследование температурной зависимости удельной теплоёмкости и коэффициента теплоотдачи сплавов Zn5Al, Zn55Al. Измерения теплоемкости и ее температурного хода играют большую роль в исследованиях твердых тел и сплавов. Это связано с тем, что теплоемкость непосредственно определяется колебаниями атомов в кристаллической решетке. Ясно, что характер этих колебаний должен зависеть от структуры решетки, ее симметрии и т.д. Поэтому различные аномалии теплоемкости, наблюдаемые в веществе, могут дать информацию о характерных для него внутренних преврашениях.

Экспериментальное исследование температурной зависимости удельной теплоемкости сплавов Zn5Al, Zn55Al проводилось методом охлаждения. Исследование показало, что зависимость температуры образца от времени охлаждения подчиняется уравнению:

$$T = ae^{-b\tau} + pe^{-k\tau},\tag{1}$$

где α ,b,p,k - константы. Получены следующие уравнения для температурной зависимости удельной теплоемкости алюминия марки A7 в интервале температур 293-873К (2) и цинка марки Ц1 в интервале температур 293-693К (3):

$$C_P = 699.84 + 96.02 \cdot 10^2 \text{T} \quad 12 \cdot 10^4 \text{T}^2 + 0.864 \cdot 10^6 \text{T}^3$$
 (2)

$$C_P = 325.44 + 36.9 \cdot 10^2 \text{T} \quad 7 \cdot 10^4 \text{ T}^2 + 0.76 \cdot 10^6 \text{T}^3$$

Исследована температурная зависимость удельной теплоемкости сплавов Zn5Al и Zn55Al (рис. 3).

Таблица 2 Временная зависимость потенциала свободной коррозии (- $E_{\text{св.корр.}}$, B) сплава Zn5Al от содержания стронция в среде электролита 0.03%, 0.3% и 3.0%-ного NaCl

0	Dnove	<u> </u>							
NaCl,%	Время выдержки,		Содержание стронций, мас.%						
Na(мин	_	0.005	0.01	0.05	0.1	0.3		
	0.00	1.093	1.040	1.034	1.038	1.062	1.058		
	1/4	1.092	1.039	1.033	1.037	1.061	1.057		
	1/2	1.089	1.038	1.030	1.035	1.060	1.056		
	1	1.085	1.039	1.027	1.034	1.061	1.054		
3	3	1.085	1.039	1.027	1.034	1.061	1.054		
0.03	5	1.078	1.035	1.023	1.029	1.058	1.051		
0	15	1.068	1.030	1.020	1.025	1.051	1.044		
	30	1.055	1.029	1.017	1.023	1.047	1.042		
	40	1.051	1.029	1.017	1.023	1.047	1.042		
	50	1.051	1.029	1.017	1.023	1.047	1.042		
	60	1.050	1.029	1.017	1.023	1.047	1.042		
	0.00	1.119	1.090	1.039	1.041	1.15	1.120		
	1/4	1.118	1.089	1.038	1.040	1.114	1.119		
	1/2	1.115	1.087	1.035	1.039	1.112	1.117		
	1	1.109	1.086	1.031	1.039	1.110	1.114		
	3	1.109	1.086	1.031	1.039	1.110	1.014		
0.3	5	1.101	1.073	1.029	1.033	1.092	1.100		
	15	1.090	1.060	1.024	1.031	1.084	1.089		
	30	1.078	1.051	1.021	1.030	1.075	1.076		
	40	1.072	1.051	1.021	1.030	1.075	1.076		
	50	1.072	1.051	1.021	1.030	1.075	1.076		
	60	1.070	1.051	1.021	1.030	1.075	1.076		
	0.00	1.161	1.059	1.048	1.056	1.080	1.106		
	1/4	1.160	1.058	1.047	1.055	1.079	1.105		
	1/2	1.156	1.057	1.044	1.053	1.078	1.103		
	1	1.151	1.057	1.044	1.054	1.075	1.101		
	3	1.151	1.057	1.044	1.054	1.075	1.101		
3.0	5	1.140	1.056	1.041	1.054	1.071	1.096		
(.)	15	1.125	1.055	1.035	1.046	1.067	1.094		
	30	1.115	1.056	1.033	1.046	1.065	1.091		
	40	1.103	1.056	1.033	1.046	1.065	1.091		
	50	1.103	1.056	1.033	1.046	1.065	1.091		
	60	1.100	1.056	1.033	1.046	1.065	1.091		

Видно, что как для исходного сплава Zn5Al, так и для легированных стронцием сплавов независимо от состава электролита и времени наблюдается резкое смещение потенциала свободной коррозии в положительную область значений в начальных стадиях. Так, если у исходного сплава стабилизация потенциала свободной коррозии наблюдается в течение 40 минут, то у сплавов, легированных различным количеством стронция, это происходит в течение 30 минут, что свидетельствует об относительно высокой их пассивации под воздействием добавок стронция.

Результаты исследований влияния добавок стронция и бария на коррозионную стойкость исходных сплавов Zn5Al и Zn55Al в среде раствора электролита 3%ного NaCl, представленные в табл. 3, показывают, что с увеличением концентрации легирующей добавки потенциал свободной коррозии указанных сплавов уменьшается, что свидетельствует о увеличении коррозионной устойчивости сплавов.

Таблица 3 Коррозионно-электрохимические свойства сплава Zn5Al легированных стронцием и барием, в среде электролита 3%-ного NaCl

Сплав	Содержа-	-Есв.корр.	-Екорр.	-E _{π.o.}	-E _{реп.}	$i_{\text{корр.}} \cdot 10^{-2}$	K·10 ⁻³
	ние Sr и Ba						
Сп	в сплаве,		F	3		A/M^2	$\Gamma/M^2 \cdot \mathbf{q}$
	мас.%						
	_	1.100	1.115	0.965	0.980	0.109	1.33
	0.005 Sr	1.055	1.050	0.915	0.975	0.047	0.57
	0.01 Sr	1.030	1.035	0.930	0.980	0.036	0.44
	0.05 Sr	1.045	1.040	0.930	0.990	0.039	0.47
7	0.1 Sr	1.060	1.058	0.955	0.992	0.040	0.49
Zn5Al	0.3 Sr	1.090	1.085	0.960	0.992	0.050	0.61
Z	0.005 Ba	1.070	1.075	0.920	0.960	0.055	0.67
	0.01 Ba	1.030	1.025	0.910	0.950	0.047	0.57
	0.05 Ba	1.035	1.035	0.925	0.955	0.055	0.67
	0.1 Ba	1.040	1.045	0.930	0.955	0.058	0.70
	0.3 Ba	1.060	1.060	0.940	0.970	0.062	0.75

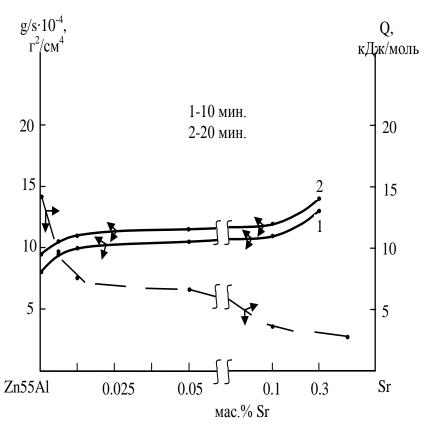


Рисунок 2. Изохронны окисления (573К) цинк-алюминиевого сплава Zn55Al, легированного стронцием.

Изучение продуктов окисления исследованных цинк - алюминиевых сплавов, содержащих ЩЗМ, показало на образование как простых оксидов ZnO, Al_2O_3 , CaO, SrO, BaO, так и оксидов сложного состава Al_2O_3 ·ZnO, Al_2O_3 ·CaO, Al_2O_3 ·SrO и Al_2O_3 ·BaO.

В целом, по данным экспериментальных исследований кинетики окисления твердых цинк-алюминиевых сплавов, легированных ЩЗМ, установлено, что с повышением содержания кальция, стронция и бария от 0.005 до 0.3 мас.% окисляемость исходных сплавов Zn5Al и Zn55Al увеличивается. При переходе от кальция к барию наблюдается уменьшение величины кажущейся энергии активации сплавов, что в целом согласуется с изменением свойств чистых ЩЗМ в пределах подгруппы кальция (табл. 7).

Таблица 6 Кинетические и энергетические параметры процесса окисления твердого сплава Zn55Al, легированного кальцием

Содержание кальция в сплаве, мас.%	Температура окисления, К	Истинная скорость окисления K·10 ⁻⁴ , кг·м ⁻² ·сек ⁻¹	Кажущаяся энергия активации, кДж/моль	
	573	2.30		
	598	2.77	140.24	
	623	3.21		
	573	2.92		
0.005	598	3.85	98.15	
	623	4.81		
	573	3.13		
0.01	598	4.98	76.62	
	623	5.01		
	573	3.38		
0.05	598	4.30	66.75	
	623	5.47		
	573	4.12		
0.1	598	5.22	41.80	
	623	6.35		
	573	4.65		
0.3	598	5.55	32.42	
	623	6.67		

Кинетика окисление сплавов Zn5Al и Zn55Al, легированных стронцием и барием. Для исследования процесса окисления твёрдых сплавов Zn5Al-Sr(Ba) и Zn55Al-Sr(Ba) были получены сплавы в широком интервале концентрации. Кинетика окисления указанных сплавов в твердом состоянии исследована при температурах 573, 598 и 623К. По результатам исследования построены изохронны окисления сплава Zn55Al, содержащего различные концентрации стронция, которые представлены на рис. 2. Кривые характеризуются монотонным увеличением скорости окисления с ростом температуры и увеличением содержания стронция, как при 10-минутной выдержке сплавов в окислительной атмосфере (кривая 1), так и при 20 -минутной выдержке (кривая 2). Эта закономерность более четко выражается при исследованных температурах, о чем также свидетельствует уменьшение кажущейся энергии активации с ростом концентрации стронция.

Таблица 4 Коррозионно-электрохимические свойства сплава Zn55Al, легированных стронцием и барием, в среде электролита 3%-ного NaCl

	Содержа-	-Есв.корр.	-Екорр.	-E _{π.o.}	-Ереп.	$i_{\text{корр.}} \cdot 10^{-2}$	$\mathbf{K} \cdot 10^{-3}$
Сплав	ние Sr и Ba в сплаве, мас.%		F	3		A/M^2	$\Gamma/M^2 \cdot \Psi$
	_	1.020	1.040	0.900	0.920	0.037	0.288
	0.005 Sr	1.005	1.010	0.875	0.900	0.016	0.124
	0.01 Sr	1.015	1.013	0.822	0.935	0.010	0.078
	0.05 Sr	1.020	1.025	0.900	0.935	0.013	0.101
A1	0.1 Sr	1.055	1.053	0.925	0.950	0.016	0.124
Zn55Al	0.3 Sr	1.070	1.068	0.940	0.980	0.018	0.140
Z	0.005 Ba	1.000	0.995	0.860	0.910	0.018	0.140
	0.01 Ba	1.015	1.018	0.885	0.940	0.014	0.108
	0.05 Ba	1.020	1.020	0.900	0.945	0.015	0.116
	0.1 Ba	1.050	1.053	0.920	0.940	0.019	0.148
	0.3 Ba	1.070	1.068	0.935	0.970	0.017	0.132

Наиболее существенное влияние на питтингостойкость оказывает химический состав сплавов, что проиллюстрировано на примере исследованных сплавов Zn5Al и Zn55Al. Введение в цинкалюминиевые сплавы стронция и бария приводит к росту граничных потенциалов питтинговой коррозии. Для каждого из рассмотренных элементов существует определенная область концентраций, в пределах которой легирование оказывает наиболее сильное влияние на питтингостойкость сплава.

Анализ влияния легирующих элементов показывает, что все значения потенциалов свободной коррозии и питтингообразования сплавов Zn5Al и Zn55Al, содержащих стронций и барий, увеличиваются с ростом концентрации добавки до 0.05; 0.1 мас.% в среде раствора электролита 3%-ного NaCl (табл. 3 и 4).

Сравнение коррозионных свойств цинк-алюминиевых сплавов, содержащих стронций и барий, показывает, что сплав цинка с 55 мас.% алюминия, легированного стронцием и барием, имеет более низкую скорость коррозии по сравнению со сплавом Zn5Al, легированным различной концентрацией стронция и бария (табл. 5).

Среди щелочноземельных металлов (Ca, Sr, Ba) наиболее эффективным легирующим компонентом является стронций, так как сплавы со стронцием имеют наименьшее значение скорости коррозии (табл. 5)

Таблица 5 Зависимость скорости коррозии сплавовZn5Al и Zn55Al от содержания кальция, стронция и бария, в среде электролита NaCl

	Communic	Скорость коррозии (K, г/м²·ч) в среде электролита NaCl								
Сплав	Содержание ЩЗМ	0.03% NaCl				3% NaCl				
C	в сплаве			,	Добавк	а, мас.	⁄o			
		_	0.005	0.01	0.1	_	0.005	0.01	0.1	
	_	1.24	_	_	_	1.33	_	-	-	
5A1	Ca	_	0.48	0.35	0.62	_	0.60	0.46	0.72	
Zn5Al	Sr	_	0.41	0.34	0.44	_	0.57	0.44	0.49	
	Ba	_	0.46	0.35	0.51	_	0.67	0.57	0.70	
	_	0.233	_	_	_	0.288	_	_	_	
Zn55AJ	Ca	_	0.124	0.078	0.108	_	0.155	0.116	0.171	
	Sr	_	0.101	0.062	0.101	1	0.124	0.078	0.124	
.,	Ba	_	0.132	0.085	0.116	_	0.140	0.108	0.148	

Таким образом, можно заключить, что цинк-алюминиевые сплавы легированные кальцием, стронцием и барием в пределах концентрации 0.005-0.05 мас.%, характеризуются минимальной скоростью коррозии (в 2-3 раза меньше, чем для исходных сплавов Zn5Al и Zn55Al) и могут использоваться в качестве антикоррозионного покрытия для стальных изделий и сооружений.

Кинетика окисления сплавов Zn5Al и Zn55Al, легированных щелочноземельными металлами

Методики исследования кинетики окисления твердых металлов, сплавов и продуктов их окисления. Исследование кинетики окисления твердых металлов и сплавов с кислородом газовой фазы представляет научный и практический интерес. В процессе такого взаимодействия расплав загрязняется оксидными вклю-

чениями, ухудшается качество поверхности, понижаются механические свойства изделий. Определение кинетических параметров и механизма окисления позволит получить дополнительную информацию о процессе окисления.

Кинетику окисления твердых сплавов изучали термогравиметрическим методом. Изменение веса сплавов фиксировали по растяжению пружины с помощью катетометра КМ-8. Тигли (диаметром 18-20мм, высотой 25-26мм) перед опытом подвергались прокаливанию при температуре $1000-1200^{0}$ С в окислительной среде до постоянного веса.

Для получения информации о составе фаз в продуктах окисления использовали метод рентгенофазового анализа порошка. Рентгенофазовый анализ проводили на дифрактометре ДРОН-2.0, с использованием медного K_{α} излучения.

Кинетика окисления сплавов Zn5Al и Zn55Al, легирован- ных кальцием. Нами изучены кинетические особенности окисления твердых цинк-алюминиевых сплавов Zn5Al и Zn55Al, легированных кальцием, в количествах: 0.005; 0.01; 0.05; 0.1; 0.3 мас.%. Кинетические и энергетические параметры процесса окисления сплавов системы Zn55Al-Ca приведены в табл. 6.

Кинетика окисления исходных сплавов Zn5Al и Zn55Al в твердом состоянии исследована при температурах 573, 598 и 623К. Сформировавшаяся оксидная плёнка в начальных стадиях процесса, по-видимому, не обладает достаточными защитными свойствами, о чем свидетельствует рост скорости окисления от времени и температуры (табл. 6, рис.2).

Окисление сплава Zn5Al, содержащего 0.005 и 0.01 мас.% кальция, в твердом состоянии характеризуется более растянутым процессом формирования оксидной плёнки во времени на начальном этапе окисления. Скорость окисления изученных сплавов в зависимости от времени и температуры незначительно увеличивается. Истинная скорость окисления данных сплавов, вычисленная по касательным, проведённым от начала координат к кривым и рассчитанная по формуле: $K = g/s \cdot \Delta t$, составляет $3.85 \cdot 10^{-4}$ и $4.98 \cdot 10^{-4}$ кг·м⁻²·сек⁻¹, соответственно при температуре 598K. Кажущаяся энергия активации окисления, вычисленная по тангенсу угла наклона прямой зависимости 1gK-1/T, составляет 98.15 и 76.62 кДж/моль, (табл. 6).